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ABSTRACT

This paper presents an appropriate approach for the robust
estimation of the noise statistics in dental panoramic X-ray
images. To achieve maximum image quality after denoising,
a new, low order, local adaptive Gaussian Scale Mixture
model is presented, which accomplishes nonlinearities from
scattering. State of the art methods use multi scale filtering
of images to reduce the irrelevant part of information, based
on generic estimation of noise. The usual assumption of a
distribution of Gaussian and Poisson statistics only lead to
overestimation of the noise variance in regions of low inten-
sity (small photon counts), but to underestimation in regions
of high intensity and therefore to non-optimal results. The
analysis approach is tested on 2000 samples from a database
of 50 panoramic X-ray images and the results are cross va-
lidated by medical experts. We conclude with a short sum-

mary.

Keywords: Noise Estimation, De-noising, Blind Source
Separation

1. INTRODUCTION

In medical diagnostics intuitive decisions take place, based
on experience, beside the medical knowledge. Therefore,
preservation of the overall look of an image, even though
after application of an image processing method, is promi-
nent. Appropriate methods have often to deal with detec-
tion of small, low contrast image details, situated side by
side, differing probably not in gray-level-mean, but may ha-
ve slightly different variance. Denoising with overestimated
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noise variance easily remove such details, whereas doing
with underestimated, keeps the noise.

Among others, most used methods for image denoising are
multi scale filtering based on the wavelet transform [21, 23].
The basic idea is to decompose an image into different con-
tributions in several frequency bands and at different scales,
leading to a over complete representation in the transfor-
med space. Thus, the deterministic image content is repre-
sented by a set of few strong coefficients, whereas the noise
is spread over all coefficients with weakly strength. The-
refore, a deconvolution technique is usually applied using
linear or non-linear filtering [7, 26, 21] to reduce the con-
tribution of noise in the transformed coefficients. In [20]
a combined method for denoising and deblurring is given,
using Gaussian Scale Mixtures(GSM).

The works in [3, 4] evaluate the efficiency of denoising
and enhancement using simulations of X-ray images conta-
minated by additive noise of known distribution. Most ap-
proaches suppose the noise has Gaussian nature; some sup-
pose a Poisson distribution or a mixture of both distributi-
ons. However, X-ray images show neither the Gaussian nor
the Poisson distribution alone, because the noise is coherent
to the density of matter, consequently the noise variance
is spatially adaptive, too. Consider a patient is placed bet-
ween a X-ray tube, as the source, and a detector of any ty-
pe. The X-ray tube is operated at a certain kilo-Voltage-peak
(kVp), which, along with any filtration, determines the ener-
gy spectrum of the beam. X-ray photons from the source,
which have indeed Poisson counts, are absorbed along the
path between the source and detector by the patient’s matter
(muscle, fat, bone, air, or contrast agents). The photon at-
tenuation of each type of matter depends on its elementary
and chemical composition as well as the beam. This effect
is quantified by the mass attenuation coefficients (MAC),
which give the fraction of photons that are absorbed by unit
thickness of matter. Unfortunately the MAC is not a con-



stant, it varies with the kVp value, because of physical ef-
fects of scattering of the photons along its way. For a deeper
insight in the basics of the MAC refer to the companion pa-
per of the authors [?], where an introduction on scattering is
given. Further information about the topic is found in [2, 9].
Therefore, an accurate investigation on the noise model
has to be performed for optimal denoising results.
Some attempts of authors to preserve the edges within an
image fail in the case of low contrasts. The estimation of
noise itself is left open by many authors. A comparative
study between six methods is shown in [16]. A method for
blind estimation of noise variance is given in [12] and the
references herein. Statistical models for images are descri-
bed in [19] and in [20] the application of Gaussian Scale
Mixtures to natural images give very promising results.

2. PROBLEM STATEMENT

The goal is to find better estimates for the noise variance
in panoramic X-ray images. The motivation comes from the
experience, that the simplifying assumption of Independent-
ly Identically Distributed (I1ID) noise statistics may lead to
an error in estimation of the noise variances. Thus, in re-
al X-ray images one can find a significant coherence of the
noise with the image contents.

To illustrate the problem, two panoramic image acquisitions
are depicted: one image (Figure 1) from Computer Tomo-
graphy (CT) scan technique and the other image from X-
ray imaging (Figure 2). The CT image (Figure 1) shows an
idealistic view of the panoramic X-ray in (Figure 2), which
needs to be enhanced and freed from the mixture of noise.

Fig. 1. CT image as a reference, it shows more of the "reali-
mage, as the original image is not available.

Fig. 2. An example of the quality of a real panoramic X-ray.

Figure 3 shows the degradation of the image quality if a
mixture of Gaussian and Poisson noise is added to the CT
image, where the resulting image quality is still far from the
real panoramic X-ray image. A classical denoising approach
is performed by wavelet coefficients soft-thresholding using
an usually noise estimate [7]. The noise is mainly removed,
but the image is blurred. Within the weak wavelet coeffi-
cients there is hidden edge information, therefore fine de-
tails in the image are lost (pseudo-Gibbs phenomenon).

Fig. 3. The zoomed CT image: artificial Gaussian and Pois-
son Noise added (left); and classically denoised (right).

Figure 4 shows the effect of such a denoising on the real
image. The low contrast image (left) is more sensitive than
the CT image to the overestimated noise estimate.

The new approach models the X-ray image as a mix-



Fig. 4. A zoom of the real image (left) and it’s classically
denoised variant (right).

ture of three random sources: a) the background informati-
on (BI), b) the information of matter (IOM) and c) the noi-
se. Therefore, one can argue the problem is similar to Blind
Source Separation (BSS), where the aim is to reconstruct
the noise source, by suppressing the other two.

In this work, a model for estimation of noise is perfor-
med, motivated by a comparison between the CT image de-
tails and the panoramic X-ray image, which can be exploi-
ted for denoising and image enhancement purpose. The new
method for estimation of noise is performed with aid of the
multi resolution support [22] and is derived from an idea of
Blind Source Separation [24] to separate the noise from the
image’s diagnostic and background information.

3. THE PROPOSED APPROACH

In the proposed approach, prominent constraints are: a) pre-
servation of the image’s overall look; b) preservation of the
diagnostic content in the image; and c) detection of small,
low contrast details in the diagnostic content of the image.
As shown in the previous section, state of the art methods
provide non-convincing results. The new approach is foun-
ded on an attempt to interpret the problem from the view
of blind source separation (BSS), thus to see the panoramic
image as a sample mixture of (unwanted) background in-
formation, diagnostic information and noise. The question
is, how to get another sample image? Due to the fixed setup
condition of a dental panoramic acquisition system, an em-
pty scan, taken without patient can provide a good another
sample - the image of the illuminating background. This
background image gives information on the, non-uniform
X-ray illumination and also owns the particle statistics, gi-
ven from the X-ray source, collimation and prefiltration of
the beam.

3.1. The Noise Estimation Model

The estimation of the variance of noise is a challenging task,
because the usually assumption for the image noise to be in-
dependently and identically distributed (i.i.d.) is highly vio-
lated. This because of the huge nonlinearity of the radio-
graphic imaging process. To overcome this, Monte Carlo
simulations by GEANT4 package [1] were done, thus gui-
ded to an simplified, semi-empirical model for generation
of the X-ray spectra [5]. Further, a scatter probability model
is implemented under some simplifying conditions, which
is cross checked with data from the NIST database [9] for
verification purpose.
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Fig. 5. The Estimation Model has two major parts: the upper
is for the calculation of the scatter prior table, whereas the
lower part is for the posterior processing of an actual image.

Figure 5 shows an overview on the implemented esti-
mation model. It is subdivided into a prior calculation mo-
del and a posterior one. The prior model generates a table
of scatter priors, which is then used for the posterior calcu-
lation of the spatial noise variance map. For the prior mo-
deling part, the X-ray source energy spectrum is calculated
by a semi-empierical model [S]. A probabilistic Photon in-
teraction model is implemented to take the three scattering
processes' into account.

The simplified probabilistic photon scatter model in Fi-
gure 5 models the probabilities per [cim] thickness for scat-
ter interaction in the photon energy range [8keVt090keV],
which is suitable for dental panoramic X-ray. Two simplify-
ing assumptions are made: a) Compton scatter g;, o5, 1S as-
sumed to be constant over the diagnostic energy range and
effective atomic number Z.;r; b) Coherent scatter ooy, is
modeled as Rayleigh scatter only and assumed to be inde-
pendent of Z,¢ . Finally, in that energy range and range of

'i.e. Photoelectric absorption, coherent and Compton scatter



Model of Photon Interaction Probabilities for Al and PMMA
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Fig. 6. The simplified Probabilistic Photon Scatter Model.

matter, too, Photoelectric scatter 7 varies accordingly to the
fraction of g—z In Figure 5 the total scattering in terms of
the linear attenuation coefficients ;1 = T 4 Gincoh + Tcon
for aluminum and PMMA is related to scattering data from
the NIST database [9] (dotted lines). Up to 40keV the ener-
gy mass attenuation coefficients ., are also in good rela-
tion to the modeled Photoelectric absorption 7. Above that
point, the model has an upcoming difference, especially at
softer matters (i.e. PMMA), but their interaction probabili-
ty is quite low, thus the error may be neglected. However,
the model does not claim to replace any of the Monte Carlo
methods [1] in terms of accuracy, but it generates an appro-
priate enough scatter prior.

The developed model is verified by a physical setup,
where the (theoretically) modeled results are compared to
practically image pixel values found.

3.2. Physical Setup

Figure 8 defines the physical setup for the verification of the
estimation model. At the left hand side, the X-ray generator
is shown, which produces the X-ray beam, Iy. A prefilte-
ring stage, Filtration | and Filtration 2, by 2.5 mm and 6
mm Aluminum, respectively, attenuates the beam to 7;. The
diagnostic absorption by the patient’s matter is simulated
by Filtration 3 of Poly(Methyl Metracrylate) (PMMA), also
called acrylic glass. Finally, filtration by a 3mm lead, which
has several holes of 3mm, is essential for the measure of
scatter-glare and is only inserted temporally for measure-
ment of that.

The diagnostic image is gathered by an absorbing pho-
to stimulable phosphor (PSP) plate (BaF Br : Eu?), which
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Fig. 8. Physical Setup for the Model

traps and stores the remaining photons. The PSP stored ener-
gy is stable until read out off line by an external laser scan-
ner, utilized by the photo stimulated luminescence (PSL)
phenomenon. It has high sensitivity, a wide dynamic range
of 10* to 10%, and the fluorescence emission is high linearly
proportional to the dose in the entire operating range.

Formulating the physical setup of Fig. 8 in mathematical
terms of attenuation coefficients leads to:

K=2
I, = Iy - exp(— Z (tard;) - exp(—ppdp) (1
—_—

i=1 . g
diagnostic scatter

background scatter

I,

In (1) the intensity Io at the sensor is decomposed into the
background part I3, attenuated by the aluminum filters, at-



tenuated further by the diagnostic part of interest, crossing
the primary beam. Within the photon energy range, suita-
ble for dental panoramic X-ray diagnostic, Photoelectric ab-
sorption, Coherent scatter and Compton scattering, induce
the contrast function of matter [?], which forms the image.

Unfortunately an amount of non-negligible noise is pro-
duced, stemming from Poisson particle-count statistics, the
deflection of the primary X-ray beam caused by the photon
interaction with the shell electrons, the grain size of the PSP
(5u), and the PSL read out noise of the laser scanner. In [15]
a comparison of image quality of eight different plates is gi-
ven in terms of presampling modulation transfer function
(MTF), normalized Wiener spectra (WSN), and detective
quantum efficiency DQE. In section 4, the results in [15]
are related to the proposed approach by means of MTF.

In (%)

Hp = d
D

logarithmic fraction

4. THE ANALYSIS AND RESULTS

In the proposed approach the analysis of nature of the given
panoramic X-ray images is performed on a large data bank
of 2000 samples. A special aluminum phantom was con-
structed, which supports the ground proof of the analysis.
Thus, a collection of several characteristic parameters are
maintained. The 3x3 local variance is plotted respectively

Std. Dev. of Samples from Aluminium Stepwedge Phantom
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to the squared local mean. A slight dependence can be reco-
gnized. Then, a plot of the standard deviation over the mean
of selected samples is given in Figure 11. Two different ope-
rating cases are shown: one at 62 kVp and one at 73 kVp of

the X-ray tube. For comparison, the Poisson equivalent de-
pendence is drawn for both cases. The standard deviation
of the real image increases from a changing point on. Also
the gradient slope of the lower kVp case is higher compared
with the other, which is in a good match with interaction
theory of photons and matter.

Phenomena of discrete nature are described well by a
Poisson distribution [17]. In example, the number of unsta-
ble nuclei that decayed within a given period of time in a
piece of radioactive substance. The waiting times between
such Poisson distributed events are Gamma distributed.

From modeling of multipath fading channels in tele-
communication and ultrasonic mammography characterisa-
tion of the backscattered echo, a scalable form of a Gamma
type distribution, the Nakagami-m desity function is known.
The generalized Nakagami density function (GNM) [18] is
a type of Gamma density with three free parameters: 2, m,
and s, the scaling factor, the number of free degrees, and an
additional shape adjustment parameter, respectively.

Figure 10 shows plots of the GNM for several parameter
sets.
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Fig. 10. The Generalized Nakagami-m Density Function
(GNM).

The shape adjustment parameter s controls the heavi-
ness of the distribution tail. For s < 1 there are heavy
tails, which vanish for s > 1 to a tight density function.
For m = s = 1 the GNM becomes the Rayleigh densi-
ty function; for m = 1,s # 0 the function becomes the
Weilbull density function; and for m = 1 and s = % it
becomes a simple exponential density function. The Gene-
ralized Nakagami-m distribution is given by:

f($|m,Q,S) = 2_5) |:Ei|mx(2ms—l)e_%22s (3)

T(m) LQ

The estimation of the density function for the image I
is done for the dispersion rather than for the mean values,



motivated from the view, that the Poisson particle rate fol-
lows a Gamma distribution. One can argue, that the dispersi-
on, during the exposure for an single image pixel, increases
by somewhat function with the number of arriving photons,
regardless from what of interaction they stem.

Therefore, a Gamma like density function can be found
analyzing the standard deviation (SDEV) of images from
flat PMMA and Al phantoms. From the physical setup in
Figure 8 several panoramic phantom image scans were ma-
de with Filters 1..3. From (1), the local mean and variance of

the logarithmic fraction p,d, = In (%), where the SDEV

is shown in Figure 11, once for the unfiltered background
I (leftmost curve) and once for I, filtered by median filter
(rightmost curve). Since there are no interesting details in
the background, a kernel size of 9x9 was found to be appro-
priate to suppress the background noise.
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Then a rescaled GNM (3) density function was fitted
to the SDEV in Figure 11. The parameters for the density
function fits are obtained by maximum likelihood estima-
tion (MLE). Thus, a modified glmfit from MATLAB fits a
generalized linear model (GLM), calculates the MLE of the
mean parameters, and solves the MILE for the shape parame-
ter, which is the reciprocal of the variance parameter. The
Nakagami density function best fitted, does not cover the
entire heavy tail of the panoramic phantom image SDEV
distribution. One can argue, the difference density between
the Nakagami model density function and the density func-
tion of the acquired image is probably the density of the
remaining scatter-glare. To verify this hypothesis, denoted
Hy, the scatter-glare was directly measured by a beam stop
method (see Figure 8), such that a 3mm lead plate with ho-
les of 3mm diameter is positioned between PMMA filter
and detector, too. The image values located surrounding the

hole areas, above the attenuation level of the lead screen are
then counted accordingly to the scatter-glare distribution.

Histogram of Std. Deviation from Scatter-Glare Beam Stop Experiment

a

10

COUNTS

‘t———»
Scatter Glare Distribution

3
100 0002 0004 0006 0008 001 002 0014 006 0018 002

STD DEVIATION

Fig. 12. Scatter-Glare vV ar Distribution.

Figure 12 shows a density function from the scatter-
glare experiments. Thus this indicates an interestingly re-
sult, because the hypothesis seems to be well confirmed.
This leads to the support for building a spatial estimate of
the diagnostic noise contribution by using the difference
density of the SDEV found. Therefore, a spatial noise map
of scaled Gaussian random variables is formed as a GSM.

Figure 13 shows an comparison in three images from a
MTF phantom: a) source; b) proposed denoising method; c)
usually denoising threshold method. At the left hand side,
a vertical profile shows the amplitudes of the test sine gra-
ting patterns. At the bottom of every image slide shows a
zoomed view of the grating with 2.5lines/mm. The source
a) is noisy, but has sharp contrast; the proposed method b)
shows removed noise at very good contrast; finally c) shows

Fig. 13. A comparison of: a) source; b) proposed denoising
method; ¢) usually denoising threshold method.



the noise removed, but the sine grating is heavily distorted.
The MTF at 2.5line/mm is 51%, 46% and 26% for a), b),
c) respectively, where a) is in the same range compared with
measurements in [15].

5. CONCLUSIONS

This paper presents a procedure for estimation of the noise
in panoramic X-ray images. The local statistics (mean and
variance) are calculated from a large database of panora-
mic X-ray images. A noise model is created, which can be
exploited for image enhancement and denoising. The main
purpose is to trace the noise model for X-ray image acqui-
sition systems in order to achieve optimal image quality af-
ter denoising. The noise model supports the separation of
the information of interest by ideas stem from Blind Sour-
ce Separation. It is shown that the local standard deviation
(SDEV) of a PMMA phantom image can be fitted well by
a GND, where the heavy tail can be counted for the scatter-
glare density. A beam-stop measurement experiment con-
firms this quantantively. The application of the model to
form a Gaussian scale mixture shows promining results for
denoising. Further investigations of the success of the me-
thod will be published elsewhere.
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